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Abstract-The stability of convection in a horizontal porous layer, subjected to an inclined temperature 
gradient of finite magnitude, and confined between perfectly conducting planes. is investigated by means 
of linear stability analysis. It is shown that the instability appears in the form of stationary longitudinal 
rolls (with axes aligned in the direction of the horizontal component of temperature gradient) superimposed 
on the basic flow. As the horizontal Rayleigh number increases, the critical vertical Rayleigh number 
also increases and there is a series of transitions to higher order modes, corresponding to multiple 

layers of rolls. 

1. INTRODUCTION 

WHETHER or not a convective flow is stable is of 
practical importance because when instability occurs 
the rate of transfer of heat is increased. In this paper 
we study the stability of the steady convective flow 
(of Hadley type) which is set up by the horizontal 
component of a temperature gradient in a shallow 
horizontal layer of a saturated porous medium, the 
instability resulting from the presence of the vertical 
component of the temperature gradient. Weber [I] 
studied this problem, but his analysis was limited to 
the case of small horizontal temperature gradients. In 
this paper we remove the restriction that the hori- 
zontal temperature gradient be small. Standard linear 
analysis is employed. A Galerkin approximation is 
made in solving the resulting eigenvalue equation. The 
advantage of this approach, compared with a routine 
numerical investigation, is that a large parameter 
space can be dealt with in an economic manner. 

2. GOVERNING EQUATIONS AND BASIC 

SOLUTION 

We will adopt notation which is essentially the same 
as that of Weber [l]. With the y*-axis taken vertically 
upwards, the fluid is assumed to lie between the imper- 
meable planes y* = *h/2, so h is the layer depth. 
(Asterisks denote dimensional variables.) The tem- 
perature boundary conditions are 

T* = TzTAT*/2-P*x* at y* = *h/2 

so that, at a given value of x*, the lower plane is hotter 
than the upper plane by an amount AT*, and it is 
assumed that b* (the horizontal temperature gradient) 
is a positive constant. We introduce dimensionless 
variables by choosing as scales h for length, 
(c,,p),#/&, for time, q,,/h for velocity, AT* for 
temperature and P~vK,,,/K for pressure. Assuming 

that Darcy’s law is valid and making the Oberbeck- 
Boussinesq approximation, we can write the govern- 
ing differential equations in the dimensionless form 

Vp+v-RTj = 0 (1) 

v-v=0 (2) 

aT/at+v.VT-V’T = 0 (3) 

where the Rayleigh number R = gy(AT*)Kh/rc,v. 

(For Darcy’s law to be valid, there is an implied 
restriction on the magnitude of p*. We shall return to 
this point later.) 

The thermal boundary conditions are now 

T= T1/2-/3x at 1:= *l/2 (4) 

where p = /?*h/AT*. 

The system (I)-(4) permits the steady solution 

u = U(y), u = M’ = 0, T = T(y) -/3x, p = P(.x,y) 

(5) 

provided that 

Do = BR (6) 

D’T(y) = -BU(,3 (7) 

(where D = d/dv) 

T(+t) = 0. (8) 

We shall assume that there is no net mass flux, so 

<U(Y)) = 0 (9) 

(where ((e)) = JIlfiz (e) dy). 
The solution of system (6)-(9) is 

Kv) = PRY (10) 

T(y) = -J’+ &/Y2R(+v-4y3). (11) 
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NOMENCLATURE 

‘%, matrix element AT* temperature difference between lower 

A, B, C, D constants in equation (IX) and upper boundaries. 
<’ form drag constant 

“;, specific heat at constant pressure Greek symbols 

d characteristic grain diameter dimensionless overall wave number 

D differential operator. d/d>* ; dimensionless horizontal temperature 

!I gravitational acceleration gradient, [j*hjAT* 

II depth of porous medium 3: coefficient of volume expansion 
i, j, k unit vectors b dimensionless temperature perturbation 

K permeability hY thermal diffusivity. i.,,j(~~p), 
/I-, ttz dimensionless wave number in the s- and ,I,,, thermal conductivity 

:-directions I’ kinematic viscosity 
M constant defined in equation (23) P density 
P Prandtl number, II/K,,, PO standard density 
p, q quantjtjes defined in equation (23) g frequency for disturbances. 

R vertical Rayleigh number, 
,q;‘(AT*)K/l/ti,,,~ Subscripts 

t dimensionless time c critical 
V seepage velocity vector. (u, 2’. M,) f fluid 

& horizontal Rayleigh number, m solid-fluid mixture. 
f3R = .~~~~Kll~~~~~~ 

U(y), T(y), P(s, y) dimensionless basic Superscripts 
velocity, temperature and pressure * dimensional quantities 

^ X, j‘, : dimensionless Cartesian coordinates perturbation quantities 

T dimensionless temperature scaled quantities defined by 

TX standard temperature equation (23). 

3. PERTURBATION ANALYSIS (D’-a~-ikl/+ia)O+iB(k/cl’)Dtr-~lDT= 0. 

We now let (1% 

v = U(y)i + @(s, ?‘. Z. ?) These two equations must be solved subject to the 

T= T(~)-~8_u+&s,_I: t) boundary conditions (appropriate for conducting 
impermeable boundaries) 

p = P(s. ?:) +d(s. J’, 2. t) (12) 
I’ = 0 = 0 at y = *l/2. (16) 

and assume that perturbation quantities (those with 
carets) are smaH. We substitute into equations (I)- 
(4). linearize by neglecting products of small quan- 
tities and thus obtain 

V/j+?-RBj = 0 

Q*?=O 

&/at+ ~J~(r~i5~~+i~DT-~ic-V20^ = 0. (13) 

We then make a normal mode expansion, letting 

[L d, hi>, B,@] = [u(y). l>(Y), M’(?‘). O(Y),P(“Y)] 

xexp {i(kx+ttz~-at)]. 

Substituting in equation (13), eliminating I((?‘), ~q(y) 
and p(y), and writing 

& = /$+& 

we obtain the pair of ordinary differential equations 

(D”--a”)~~+Ra% = 0 (14) 

Equations f 14)-( 16) constitute an eigenvalue problem 
in which R may be regarded as the eigenvalue. 

4. SOLUTION OF THE EIGENVALUE PROBLEM 

We obtain an approximate solution of the eigen- 
value problem using the Gaierkin method. Even at 
low order. this method has been found to yield an 
excellent approximation in similar problems (see, for 
example, Finlayson [2]). As a first step we take a 
second-order approximation. This enables us to deal 
qualitatively with the various modes of disturbance 
(odd and even modes, stationary and travelling 
modes) which must be considered. We discuss the 
accuracy of the approximation in Section 5. We 
choose as trial functions trigonometric functions 
which satisfy the boundary conditions exactly. (They 
also satisfy the differential equations exactly when 
p = 0.) We take 
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Ul,_, = e2,_, = cos (2j- 1)rcy 

c2j = Olj = sin 2jny. 

To start with, we put 

(17) 

v = Au, + Bvz, tI = Co, +DO,. (18) 

We substitute these expressions into equations (14) 
and (15). multiply the first equation by v, and z’> in 

turn, multiply the second equation by 0, and 0, in 
turn, integrate each term from )’ = - l/2 to l/2 and 
perform some integrations by parts utilizing the 
boundary conditions and then eliminate the constants 
A. B. C and D from the resulting four homogeneous 
linear equations, to obtain the eigenvalue equation in 
the form 

det (Ai,) = 0 

where, for i, j = 1, 2 

(19) 

A,, = (Dz.+Dz’, + a2u;z,,) 

Aicz., = - Ru2(t$v,) 

A ,,,+? = (z1,8,DT-ikBcl~‘8,D2;) 

Ai+z.j+2 = (DB,DB,+(o? -io+ikU)BJ,). 

All these integrals are easily evaluated, and after some 
row and column multiplications equation (19) yields 

rC’+c(’ 0 

0 47t* +cc? 

1 -fi2R/4n2 (8/3)&p/a* 

- (8/3)ikP/& 1 -/3’R/16n2 

Rc12 0 

0 RU? 
= 0. (20) 

n’+ci-iu (16/9n2)ikflR 

(16/9x2)ikbR 47c’+a2-ia 

Since we require solutions that are bounded as x and 
?: become large, the wave numbers k and CI must be 
real. At neutral stability, 0 is also real. Then, expand- 
ing out the determinant and taking the real and 
imaginary parts of equation (20) we obtain the pair 
of simultaneous equations 

(R-l?:, -p’/4a’)(R”-~~/4-q’/4d2) 

+Mk2&dm”(pq+9/4)-pqd2/16d4 = 0 (21) 

fFfR”-R&I+4q)/(4p+4q)-pq/4~2} = 0. (22) 

Here 

R” = R/4x2, fin = R,/4n2 = /!IR/4n= 

i = u/n, h? = k/u, d = a/n2 

p = 1 fE2, q = 4+@, M = 256/81~‘. (23) 

The quantities with tildes and the symbols p, q and M 
have been introduced as abbreviations. The symbol 
k^ = k/(k2 +m2) I” takes the value unity for transverse 
modes (m = 0) and the value zero for longitudinal 

modes (k = 0). We have introduced a ‘horizontal 
Rayleigh number’ R, defined by 

R, = fiR = gy/I*Kh*/rc,v (24) 

and from now on we shall refer to R as the ‘vertical 
Rayleigh number’. 

It is now appropriate to consider the various types 
of modes of disturbance. 

4.1. Stationary longitudinal modes (c? = 0, k^ = 0) 
Equation (22) is satisfied, and equation (21) yields 

the alternatives, either 

R = &+(l+oi2)‘/4rY (25) 

or 

w = R;/4+(4+a*)*/4aZ. 

For the first mode, given by equation (25) 
mum value of R” as the wave number oi 
attained when oi = 1, and is given by 

d,,, = IS& 

(26) 

the mini- 

varies is 

(27) 

that is 

R LS, = 4rcaf R;/4n’. (28) 

Since RH = /IR this agrees with the approximation for 
small /I obtained by Weber (11, namely 

R = 47c’(l +p’). (29) 

For the second mode, given by equation (26), the 
minimum value of R” is attained when o? = 2, and is 

given by 

R”LS2 = 4+&/4. (30) 

We see that R,,, > RLs, for & < 2, but RLs2 < A,,, 
when RH B 2. 

4.2. Stationary transverse modes (5 = 0, k^ = 1) 
For this case, equation (21) gives 

(8-R; -p’~407’)(d-R”~~4-q’/4o?z) 

+MR”$-2(pq+9/4) = 0. (31) 

For given 07 and R,, this is a quadratic equation for 
R”, which can easily be solved numerically. The results 
for the critical value I?,,, (the minimum as CI varies, 
of the smaller root) are plotted in Fig. 1. It is seen 
that RLs, is always less than R-r,, for R, # 0, i.e. the 
longitudinal mode is more unstable than the trans- 
verse mode. It is only for small values of l&, that the 
second root for i? takes a minimum as u varies. The 
minimum value FTs2 is also plotted in Fig. 1. (For 

larger values of R,, this second root has a maximum 
(rather than a minimum) as a varies.) 

4.3. Travelling waves modes (6 # 0) 
Now equation (22) requires that 

R = R”; (p + 4q)/(4p + 49) +pq/4d2. (32) 

This does not depend on the direction of the hori- 
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FIG. I. Plots relating critical values of the vertical Rayleigh 
number R and the horizontal Rayleigh number R, for vari- 
ous modes of instability. The modes are designated LS for 
longitudinal stationary, TS for transverse stationary and TO 

for transverse oscillatory. 

zontal wave number vector (as expressed by I;). How- 
ever, the frequency d does depend on k^. From equa- 

tion (21), together with equation (32) we find that 

+(1024/9)rr’k^‘&oi’[(l+o?‘)- ‘(4+:‘))‘+4/9]. 

(33) 

For longitudinal modes (L = 0) this gives no real value 
for 6 (and so there are no unstable longitudinal trav- 

elling wave modes) while for transverse modes (i = 1) 
it is only for &, exceeding a certain cut-off value that 
real values of 6 are possible. For such values of & we 
return to equation (32) and minimize r? with respect 
to 2. to obtain the critical value &o,,2, the critical ver- 
tical Rayleigh number for transverse oscillatory dis- 
turbances which involve an oscillation in time between 
a state with eigenfunction (~1,. 0,) and a state with 
eigenfunction (rz, OZ). (It is possible to calculate the 
ratios B/A and D/C for the coefficients in equation 
(17). In general. these ratios are not purely imaginary. 
and so the time interval from the first to the second 

state is not equal to that for the return from the 
second state to the first.) The values for &To,,2 
obtained numerically are also plotted in Fig. 1. It is 
seen that &-o, J is always greater than the minimum 
of w,,, and R”,,,. 

In each case. the corresponding values of the critical 
horizontal wave number P* are plotted in Fig. 2. It is 
noteworthy that c&, decreases as & increases. As one 
might expect, c&,,~ takes values intermediate between 
those of oi,~,, and &. 

4.4. Higher order modes 
The Galerkin process may be repeated with P,, L’:, 

O,, O2 replaced by functions of the form ( 17) with 
other values ofj. One finds that, as far as stationary 
modes are concerned, the transverse modes are always 
more stable than the longitudinal modes. The critical 
vertical Rayleigh number for the mth longitudinal 
mode is given by 

t\;lELI) 
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FIG. 2. Plots relating critical values of the non-dimensional 
horizontal wave number c( and the horizontal Rayleigh num- 
ber RH, for various modes of instability labelled as in Fig. 1. 

L = mt w:/m2 

Longitudinal oscillatory modes are never unstable. 

For transverse oscillatory modes the critical vertical 
Rayleigh number for the interaction between the mth 
and nth states is given by 

&OWl = (m+n)‘/4+8~(m3+n3)/m”n’(m+n). 

It is easily checked that &,m,n is always greater than 
the minimum of the pair R,,, and RLs,. Hence the 
oscillatory modes are never the favoured ones for the 
onset of instability. In fact, for RH in the range 

m(m- 1) < 8, < m(m+ 1) 

the overall critical vertical Rayleigh number is aLSrn 
which corresponds to the wave number d = m. That 
is, for 

4m(m- 1)~’ < R, ,< 4m(m+ 1 )n’ 

we have 

R, = 4m’n2 + R,?,/4m’n’. LX, = mn. 

5. DISCUSSION 

5.1. The mechanism of the instability 
Looking back through the analysis, we see that the 

effect of the horizontal temperature gradient on the 
instability of the longitudinal modes arises through 
the terms of the form (rOD7’) where T is given by 

equation (1 l), so 

DT= -l+ >$B*R(l-12~2). (34) 

With (L@) positive, the term - (cBDT) can be inter- 
preted as a rate of transfer of energy into the dis- 
turbance by interaction of the perturbation convective 
motion with the basic temperature gradient, and 
clearly this has to be positive if instability is to occur. 
For example 

1 B’R 
-(o,e,DT) = - - -;- 

2 8n- 
(35) 

so that a necessary condition for instability is that 
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/‘R < 4n2, that is (since RH = f3R), R$‘4x2 < R. (In 
fact, we know from equation (28) that instability 
requires that Ri/4a2 < R-4n2 for this mode.) We 
note that the agency causing the instability is essen- 
tially a thermal one, so we have a situation which 
contrasts with the instability of shear flows in which 
a mechanism involving the transfer of momentum is 
invoived. Also, it is clear that the effect of increasing @ 
is stabilizing because it distorts the basic temperature 
profile away from the linear one (and ultimately 
changes the sign of its slope in the centre of the 
channel). Further, we find that 

-(/, 0 DT),!-K! 
mm 2 8n2m2’ (36) 

Thus the stabilizing effect from the distortion of the 
basic temperature profile decreases as m increases, 
and this explains the transition to the next higher 
order mode (as the favoured form of disturbance) 
when the horizontal temperature gradient increases. 

We also note that for the transverse modes there 
are additional terms like (ik~~-%,Dz~~) which arise 
from an interaction involving the convective transfer 
of heat in the .*-direction. These terms are out of phase 
with the other perturbation energy transport terms. 
They lead to the possibility of instability involving 
transverse oscillatory disturbances. 

5.2. The limitations of the model and the analysis 
Here we have been considering an idealized 

situation, one in which the length-to-depth aspect 
ratio is sufficiently large so that end effects may be 
neglected, and hence the basic flow is unidirectional. If, 
in fact, we have flow in a box with walls at x* = + L/2, 
then the horizontal temperature difference is fi*L. For 
the Boussinesq approximation to remain valid, we 
require that #*t K 1. If yB*h = O(E) and R, = O(l), 
then gKh/K,v = O(E- ‘) and so yP*Kmv/gK = O(E’). 
This imposes an upper limit on the size of fl** but 
it appears that, at least for the case of liquids, this 
restriction will not be serious in most situations. We 
conclude that R, values of order unity should be 
obtainable without invalidating the Boussinesq 
approximation, but clearly the approximation will be 
invalidated for sufficiently large horizontal tem- 
perature gradients. 

Further, as @* increases the magnitude of the basic 
velocity increases, and sooner or later Darcy’s law will 
no longer be applicable. Weber [I] found a condition 
that a Reynolds number based on the characteristic 
basic velocity was sufficiently small, which implies that 
analysis based on Darcy’s laws is valid if 

RH < 2PhJd (37) 

where P is the Prandtl number and d the characteristic 
grain diameter. A study of what happens when 

Darcy’s law is replaced by Forchheimer’s quadratic 
drag law indicates that stability results based on 
Darcy’s law are valid if 

R, < Ph/cK”2 (38) 

where c is the form drag constant (the value of which 
is of theorder ofO.5) and K the permeability. Criterion 
(35) is essentially the same as (34). Insertion of some 
typical values of the various physical quantities shows 
that Darcy’s law will be valid in nearly all laboratory 
situations, the exceptions being those involving liquid 
metals for which the kinematic viscosity is particularly 
small. 

We now turn to the question of the accuracy of our 
second-order Galerkin approximation. Having deter- 
mined that it is the longitudinal stationary modes 
which are the most unstable modes, it is feasible 
to carry the algebraic treatment one step further, 
using as trial functions the set 2~~ = Br = cos XV, 
cj = 0, = cos 3%); for the lowest even mode and the 
set r1 = o2 = sin 2xy,zi, = 8, = sin 47~yfor thelowest 
odd mode. By this means we have found that the 
second-order approximation is highly accurate so 
long as &, has a value of unity or smaller. For 
example, when RH = 1, the critical value of R is over- 
estimated by about 1% and the critical value of oi is 
underestimated by about 4%. 

But as & increases, the accuracy of the second- 
order approximation rapidly decreases. When a,, = 2, 
the value for the switch-over from the first longi- 
tudinal stationary mode to the second, the critical 
value of R” is overestimated by 20%. For larger 
values of & a large number of trial functions will be 
necessary to get an accurate approximation. Indeed, 
at very large values of & the Galerkin approximation 
wifl not be feasible, even when a computer is 
employed, and some sort of asymptotic analysis will 
be needed. In view of the above limitations of the 
model itself, it is doubtful whether the effort of per- 
forming this additional work is justified. 

At present there are no experimental observations 
available, even for the case of small values of &. 
When some experiments have been performed, it may 
be desirable to use a computer to perform com- 
putations for intermediate values of kH. In the mean- 
time, our approximate results provide upper bounds 
on the critical vertical Rayleigh number. 
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D. A. NELL> 

CONVECTION DANS UN MILIEU POREUX AVEC UN GRADIENT DE 
TEMPERATURE INCLINE 

R&sum&-La stabilite de la convection dans unc couche poreuse horizontale soumisc i un gradient dc 
temperature fini et confinie entre deux plans parfaitement conducteurs, est etudiee au moycn dune 
analyse lintaire de stab%& On montre que l’instabiiit~ apparait sous la forme de rouleaux longitudinaux 
stationnaires (avec Ies axes alignis dans la direction de la composante hori~ontale du gradient de tem- 
perature) superposes a ~~coulement de base. Quand le nombre de Rayleigh horizontal au~ente. le nombre 
de Rayleigh vertical critique croit aussi et ii y a une serie de transitions vers les modes plus elevis qui 

correspondent a des couches multiples de roulcaux. 

KONVEKTION IN EINEM PORijSEN MEDIUM MIT GENEIGTEN 
T~MPERATURGRADI~NT~N 

Z~~menf~~g-Die Stabilitlt der Konvektion in einer waagercchten porlisen Schicht wird mit Hilfe 
der linearen Stabilitatsanalysis untersucht. und zwar fiir den Fall eines geneigten endlichen Tem- 
peraturgradienten sowie ideal leitenden Begrenzungsfllchen. Es zeigt sich, dal3 die Instabilitlt in Form 
stationlrer LBngswirbeI auftritt, die der Grundstromung iiberlagert dnd. Die Achsen der Wirbel sind in 
Richtung der horizontalen Komponente des Tenlperat~rgradienten ausgerichtet. Bei wachsender hori- 
zontaler Rayleigh-~hl nimmt die kritische senkrechte Raylei~h~Zahl ebenfalis zu, und es kommt zu eincr 
Reihe von ~berg~ngen zu Str~ln~~ngsnlustern hiiherer Ordnung, d.h. zu einer Vielzahl von W~rbeilagetl. 

KOHBEKL@DI I3 ~OP~~O~ CPEjJE C HAK~OHHbIM T~M~EPA~YPHbIM 
rPA~~~HTOM 

An?mTaws--C ~cnon~oBaH~e~ ~~He~Horo aiianis3a wccneayewn yc-roiiurisocrb KoHBeK~~ B ropx3oH- 
TZUIbHOM IlOpHCTOM CAN, nOA8e~XC’SiHOM At%CTBSiIO HliKJIOHHOI’O TeM~e~TypHOfO I-p@iSiUSTa KOHWl- 
HOii t+em~H~bi H orpanavemioro E~fWlbHO tIpOBOA~WiMH IIJIOCKOCTRMH. IIoxa3aa0, VTO 
HeyCTO&lRBOCTb BO3HHRaeT B BHAeCTiWHOHapHldX I-IpOAOJIbHbIX BWlOB(OCH KOTOPMX paC~OROXtt%iJd B 

HanpaBfleiinss ropn30fiTanbHoro xowoiiewra reMnepaTypHor0 r~eHTa~ Hal’loXeHwx Ha oc~o~~oe 
TeWH&ie. c YBeRU~~~eM rOpH3OHT~bHOrO ‘fStCJE% P!.SJleS BO3paCTaeT KIBS?WIeCKW BepTHICUlbS%Oe YHCJIO 
P3Xen w Ha6n~Aa~c~ pnn nepexonoil K peXHh4at.t 60~~2 BMCOKO~O nopnnsa, c~T~T~B~~nM wio- 

rOq~CnOKH~M CJlORM BBZOB. 


